When different entanglement witnesses detect entangled states simultaneously
Jin-Chuan Hou
Taiyuan University of Technology

Abstract
The question under what conditions different witnesses may detect some entangled states simultaneously is answered for both finite- and infinite-dimensional bipartite systems. Finite many different witnesses can detect some entangled states simultaneously if and only if their convex combinations are still witnesses; they can not detect any entangled state simultaneously if and only if the set of their convex combinations contains a positive operator. For two witnesses W_1 and W_2, some more can be said: (1) W_1 and W_2 can detect the same set of entangled states if and only if they are linearly dependent; (2) W_2 can detect more entangled states than that W_1 can if and only if W_1 is a linear combination of W_2 and a positive operator. As an application, some characterizations of the optimal witnesses are given and some structure properties of the decomposable optimal witnesses are presented.

Co-author Yu Guo (Shanxi University)